Intermediate-State HMMs to Capture Continuously-Changing Signal Features

نویسندگان

  • Gustav Eje Henter
  • W. Bastiaan Kleijn
چکیده

Traditional discrete-state HMMs are not well suited for describing steadily evolving, path-following natural processes like motion capture data or speech. HMMs cannot represent incremental progress between behaviors, and sequences sampled from the models have unnatural segment durations, unsmooth transitions, and excessive rapid variation. We propose to address these problems by permitting the state variable to occupy positions between the discrete states, and present a concrete left-right model incorporating this idea. We call this intermediate-state HMMs. The state evolution remains Markovian. We describe training using the generalized EM-algorithm and present associated update formulas. An experiment shows that the intermediate-state model is capable of gradual transitions, with more natural durations and less noise in sampled sequences compared to a conventional HMM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

شبکه عصبی پیچشی با پنجره‌های قابل تطبیق برای بازشناسی گفتار

Although, speech recognition systems are widely used and their accuracies are continuously increased, there is a considerable performance gap between their accuracies and human recognition ability. This is partially due to high speaker variations in speech signal. Deep neural networks are among the best tools for acoustic modeling. Recently, using hybrid deep neural network and hidden Markov mo...

متن کامل

Automated Robot Behavior Recognition Applied to Robotic Soccer

Automated recognition of the behavior of robots is increasingly needed in a variety of tasks, as we develop more autonomous robots and general information processing agents. For example, in environments with multiple autonomous robots, a robot may need to make decisions based on the behavior of the other robots. As another interesting example, an intelligent narrator agent observing a robot wil...

متن کامل

Contextual Hidden Markov Models forWavelet - domain Signal

Wavelet-domain Hidden Markov Models (HMMs) provide a powerful new approach for statistical model-ing and processing of wavelet coeecients. In addition to characterizing the statistics of individual wavelet coeecients, HMMs capture some of the key interactions between wavelet coeecients. However, as HMMs model an increasing number of wavelet coeecient interactions , HMM-based signal processing b...

متن کامل

Automated Robot Behavior Recognition

Automated recognition of the behavior of robots is increasingly needed in a variety of tasks, as we develop more autonomous robots and general information processing agents. For example, in environments with multiple autonomous robots, a robot may need to make decisions based on the behavior of the other robots. As another interesting example, an intelligent narrator agent observing a robot wil...

متن کامل

Handwriting word recognition using windowed Bernoulli HMMs

Hidden Markov Models (HMMs) are now widely used for off-line handwriting recognition in many languages. As in speech recognition, they are usually built from shared, embedded HMMs at symbol level, where state-conditional probability density functions in each HMM are modeled with Gaussian mixtures. In contrast to speech recognition, however, it is unclear which kind of features should be used an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011